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We propose an approach to generate strong quantum entanglement by the controllable four-wave-mixing
mechanism in a single-cavity, weak-coupling optomechanical system. The optomechanical system is driven
by a strong two-tone pump field and a weak signal field, simultaneously. The two-tone pump field consists
of a lower and an upper sideband, which couple with the optical cavity and mechanical resonator, and generate
the beam-splitter and two-mode squeezing interactions under the rotating-wave approximation. This interaction
mechanism modifies the effective susceptibility of the optomechanical cavity and optomechanically induces a
four-wave-mixing process. Strong quantum entanglement can be generated between the signal and four-wave-
mixing fields in realistic optomechanical systems. The generation scheme of the quantum entanglement is quite
robust against thermal-mechanical noise, and significant entanglement can persist at room temperature in the
weak-coupling regime.
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I. INTRODUCTION

Cavity optomechanics explores the interaction between
intracavity electromagnetic fields and micromechanical or
nanomechanical motion via radiation-pressure force. It pro-
vides a powerful platform for fundamental quantum physics,
quantum sensing, and quantum information processing [1].
Typical optomechanical first-order interactions include the
beam-splitter (BS) and two-mode squeezing (TMS) interac-
tions, which can produce various physical phenomena. The
BS interaction enables the exchange between photons and
phonons that contribute to sideband cooling [2–7], coherent
quantum state transfer, wavelength conversion [8–12], and op-
tomechanically induced transparency [13,14]. In comparison,
the TMS interaction enables the generation of photon-phonon
pairs, and has been used to realize the entanglement between
photons and phonons [15] and optomechanically induced am-
plification [16]. By combining the BS and TMS interactions,
the Bogoliubov mode in the optomechanical system can be
generated [17–19]. The back-action evasion measurement for
the mechanical quadrature component was achieved when the
coupling strengths of the BS and TMS interactions were equal
[20–23]. Moreover, the quantum squeezed state of the me-
chanical mode has been generated by increasing the coupling
strength of the BS interaction to be larger than that of the TMS
interaction [18,24–28].

Squeezed light fields are typical nonclassical states where
the fluctuation noise in one quadrature of the optical field is
below the standard quantum noise limit; these fields have been
demonstrated in optomechanical systems [29–31]. The two-
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mode squeezed state is a special type of quantum entangled
state, where the amplitude quadrature and phase quadrature
of the states are both quantum correlated. Quantum entan-
glement is a crucial resource for quantum communication
and quantum computing [32,33], can improve measurement
sensitivity, and is beneficial to quantum metrology [34,35].
The quantum entanglement of two output optical fields in
optomechanical systems has been investigated by coupling
a cavity mode with a mechanical mode [36,37], two cavity
modes simultaneously with a mechanical mode [38–40], or
two mechanical modes [41,42].

In this study, we present a scheme to produce strong
quantum entanglement via the controllable four-wave-mixing
(FWM) process in a single-cavity, weak-coupling optome-
chanical system. Our scheme requires neither the strong cou-
pling condition nor multiple cavity modes. Instead, only a
two-tone pump field [43–45] is required, which couples with
the mechanical resonator to generate the desired BS and TMS
interactions. In this way, the effective susceptibility of the
optomechanical cavity is modified, and an optomechanically
FWM process is induced when a weak signal field is incident
on the system.

The FWM enables a significant amplification of the signal
field and generates an associated FWM field. We find that
there exists strong quantum entanglement between the signal
and the FWM fields with realistic experimental parameters.
Our scheme works in a resolved-sideband regime, which
facilitates the high-efficiency laser cooling of the mechanical
mode, a key factor for achieving strong quantum entanglement
for optomechanical systems. We show that even without the
strong optomechanical coupling, considerable quantum entan-
glement at room temperature can still be achieved by carefully
controlling the ratio of BS and TMS interactions.
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The rest of this study is organized as follows: In Sec. II, we
present the theoretical model of the optomechanical system
and derive the output field, which consists of the classical
mean field and quantum fluctuation field, by solving the
quantum Langevin equation. In Sec. III, we investigate the
classical characteristics of the signal and FWM fields, in-
cluding the bandwidth, center frequency, and intensity gain.
In Sec. IV, we study the quantum entanglement between the
signal and FWM fields, and analyze the dependence of the
entanglement on the relevant experimental parameters, includ-
ing the optomechanical coupling strength, escape efficiency
of the optical cavity, and environmental temperature. Finally,
conclusions are given in Sec. V.

II. OPTOMECHANICAL SYSTEM MODEL

A. Hamiltonian and Langevin equations

We consider an optomechanical system consisting of a
mechanical resonator with resonance frequency ωm and an
optical cavity with intrinsic resonance frequency ωc0. The
optical cavity is driven by an intense two-tone pump field con-
sisting of a redshifted sideband ω− = ωc − ω0, a blueshifted
sideband ω+ = ωc + ω0, and a weak probe field with fre-
quency ωs. Here, ωc is the effective resonance frequency of the
optical cavity considering the average radiation pressure of the
two-tone pump field. As we will show below, in the resolved-
sideband regime κ � ωm and under the rotating-wave approx-
imation, the optomechanical coupling of the redshifted and
blueshifted sidebands with the mechanical resonator produce
the BS interaction and TMS interaction, respectively [46,47].

The Hamiltonian of the optomechanical system is
written as

H = h̄ωc0a†a + h̄ωmb†b + h̄g0a†a(b† + b) + Hdrive, (1)

where a(b) is the photon (phonon) annihilation operator,
and g0 denotes the single-photon optomechanical coupling
strength. The first two terms on the right-hand side of Eq. (1)
are the free Hamiltonian of the cavity field and the mechanical
mode, respectively. The third term is the interaction Hamil-
tonian, and Hdrive denotes the driving Hamiltonian, which is
written as

Hdrive = ih̄
√

κex(α+e−iω+t + α−e−iω−t + αse
−iωst )a† + H.c.,

(2)

where κex is the decay rate of the input cavity mirror (external
loss rate), and κ0 is the internal loss rate of the cavity apart
from κex, which results in a total decay rate κ = κex + κ0. The
driving strength |αμ| = √

Pμ/h̄ωμ(μ = ±, s) is related to the
input laser power Pμ, and we assume that |α+|, |α−| � |αs|.

The quantum Langevin equations of the cavity field a and
mechanical mode b have the forms

ȧ = −(iωc0 + κ/2)a − ig0a(b + b†) + √
κexε(t )

+ √
κexain + √

κ0av, (3)

ḃ = −(iωm + γm/2)b − ig0a†a + √
γmη, (4)

where ε(t ) = α+e−iω+t + α−e−iω−t + αse−iωst denotes the to-
tal driving fields, and ain and av denote the quantum fluctua-
tion noise of the input field and vacuum field, respectively. γm

is the intrinsic mechanical damping rate, and η is the thermal
drive to the mechanical resonator.

We apply the transformations a = ᾱ−e−iω−t + ᾱ+e−iω+t +
a1 and b = β̄ + b1 to the optical field and mechanical mode,
where a1 and b1 represent the fluctuation fields of the cavity
mode a and mechanical mode b, respectively, and ᾱ± =√

κexα±/(∓iω0 + κ/2) represents the mean intracavity coher-
ent amplitude of the two-tone pump field. Without loss of
generality, we assume ᾱ± to be real in the following. Note
that the intrinsic resonance frequency of the optical cavity
ωc0 is shifted to ωc = ωc0 + g0x̄ by the average displacement
of the mechanical mode, which is given by x̄ = β̄ + β̄∗ =
−2g0(ᾱ2

− + ᾱ2
+)/ωm.

In the resolved-sideband regime κ � ωm, by transforming
the system to a rotating frame defined by H0 = h̄ωca†

1a1 +
h̄ω0b†

1b1 and applying a rotating-wave approximation, the
linearized interaction Hamiltonian can be written as follows
by neglecting the nonlinear terms:

H = h̄	mb†
1b1 + h̄G−(a†

1b1 + a1b†
1) + h̄G+(a†

1b†
1 + a1b1),

(5)

where 	m = ωm − ω0 denotes the mechanical frequency de-
tuning between the intrinsic mechanical frequency ωm and the
frequency ω0, and G− = g0ᾱ− (G+ = g0ᾱ+) denotes the op-
tomechanical coupling strength of the BS (TMS) interaction
arising from the redshifted (blueshifted) sideband. Starting
with Eq. (5), the quantum Langevin equations of the fluctu-
ation fields a1 and b1 are given by

ȧ1 = (−κ/2)a1 − i(G−b1 + G+b†
1) + √

κexαse
−i	st

+ √
κexain + √

κ0av, (6)

ḃ1 = −(i	m + γm/2)b1 − i(G−a1 + G+a†
1) + √

γmη, (7)

where 	s = ωs − ωc is the frequency difference between the
signal field frequency ωs and the effective resonance fre-
quency of the optical cavity ωc.

B. Solutions in the frequency domain

To facilitate the characterization of the entanglement
properties of specific spectral components in Sec. IV,
we use the windowed Fourier transform o[ω] =
limτ→∞(1/

√
τ )

∫ +τ/2
−τ/2 o(t )eiωt dt [1,48,49] instead of the

conventional Fourier transform with the range of time
integration from −∞ to +∞, where τ is the finite sampling
time. In this case, o[ω] are discrete bosonic operators
satisfying the commutation relation [o[ω], o[ω′]†] = δωω′

[48], in contrast to the continuous field bosonic operators
with [o[ω], o[ω′]†] = δ(ω − ω′). By converting Eqs. (6) and
(7) into the frequency domain using the Fourier transform, we
obtain the corresponding optomechanical damping rate γopt

and mechanical frequency shift δωm [1] in the weak-coupling
regime G± � κ (see Appendix A for details):

γopt = κ (G2
− − G2

+)

	2
m + κ2/4

, (8)

δωm = 	m(G2
− − G2

+)

	2
m + κ2/4

. (9)
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Considering the input-output relation aout[ω] = −ain[ω] +√
κexa1[ω], the reflective field from the optical cavity is

given by

ar[ω] = (A[ω]κex − 1)(αs[ω − 	s] + ain[ω])

+ A[ω]
√

κexκ0av[ω] + B[ω]κex(α∗
s [ω + 	s]

+ a†
in[ω]) + B[ω]

√
κexκ0a†

v[ω] + C[ω]
√

κexγmη[ω]

+ D[ω]
√

κexγmη†[ω]. (10)

The reflective field ar[ω] consists of two parts: the classical
mean field αr and the quantum fluctuation field ar1, which are
expressed by

αr[ω] = (A[ω]κex − 1)αs[ω − 	s] + B[ω]κexα
∗
s [ω + 	s],

(11)

ar1[ω] = (A[ω]κex − 1)ain[ω] + A[ω]
√

κexκ0av[ω]

+ B[ω]κexa†
in[ω] + B[ω]

√
κexκ0a†

v[ω]

+ C[ω]
√

κexγmη[ω] + D[ω]
√

κexγmη†[ω]. (12)

From Eqs. (11) and (12), it is clear that the optomechanical in-
teraction mechanism modifies the susceptibility of the optical
cavity from its original form χc[ω] and induces a conjugate
field α∗

s [ω + 	s] (FWM field). The modified susceptibility
of the optical cavity depends on the coefficients A[ω], B[ω],
C[ω], and D[ω], which in turn rely on the parameters of the
optomechanical system (see Appendix A for details).

III. OPTOMECHANICAL FWM PROCESS

In this section, we investigate the frequency response char-
acteristics of the classical field. Assuming that the input signal
field αs is a monochromatic field and transforming Eq. (11)
into the time domain, we find that there are two frequency
components ω = 	s and ω = −	s in the reflective classical
field αr[ω]:

αr−s[	s] = (A[	s]κex − 1)αs, (13)

αr−c[−	s] = B[−	s]κexα
∗
s , (14)

where αr−s[	s] and αr−c[−	s] correspond to the signal
and FWM fields (ωF = 2ωc − ωs), respectively, as shown in
Fig. 1. From the above equations, the intensity gains of the
reflective signal and FWM fields are

Rs[	s] = |αr−s[	s]/αs|2 = |A[	s]κex − 1|2, (15)

Rc[−	s] = |αr−c[−	s]/α
∗
s |2 = |B[−	s]κex|2. (16)

Figure 2 plots the intensity gain Rs[	s] (Rc[−	s]) of the
signal (FWM) field as a function of the frequency detuning
	s. The simulation parameters we use are ωm = 2π × 5.85 ×
105 Hz, γm = 2π × 5 Hz, κ = 0.1ωm, κex = 0.98κ , and ω0 =
0.95ωm. The curves in Fig. 2 correspond to the TMS inter-
action coupling strengths of G+ = {30070,30000, 29900} Hz
from top to bottom, respectively, in which the BS inter-
action strength is set as G− = 3 × 104 Hz. For all curves,

FIG. 1. (a) Spectrum of cavity response, optical driving fields,
and FWM fields. ωc: effective cavity resonance frequency; ω− and
ω+: two-tone driving field; ωs: signal field; ωF : FWM field. (b)
Energy-level diagram of the optomechanical system. 	′

m is the
effective mechanical detuning; m and n denote the phonon number
of the mechanical mode and the photon number of the cavity mode,
respectively.

the weak-coupling condition G± � κ is satisfied. The sig-
nal (FWM) field presents a supernarrow frequency response

FIG. 2. Intensity gain spectrum of the reflective field versus the
signal frequency detuning 	s for different coupling strengths G+: (a)
signal field and (b) FWM field. G− is set as 3 × 104 Hz.
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FIG. 3. (a) Effective mechanical frequency detuning 	′
m and (b)

effective damping rate γeff as a function of the TMS interaction
strength G+. For all cases, G− = 3 × 104 Hz.

bandwidth determined by the mechanical effective damping
rate γeff = γm + γopt. The peak intensity gain of the sig-
nal (FWM) field occurs at the frequency of 	s = ∓	′

m
(−	s = ±	′

m), which indicates that injection of the weak
signal field with frequency 	s = ∓	′

m into the optomechani-
cal system induces a FWM field with frequency −	s = ±	′

m
when the strong two-tone pump field is applied, as shown in
Fig. 1(b). Note that 	′

m = 	m + δωm denotes the effective
mechanical frequency detuning, considering the mechanical
frequency shift induced by the optomechanical self-energy
[see Eq. (9)].

The frequency response characteristics of the FWM pro-
cess is tunable by varying the optomechanical self-energy. In
Fig. 3, we plot the effective mechanical frequency detuning
	′

m and effective damping rate γeff as a function of the
coupling strength G+. Other simulation parameters are the
same as those in Fig. 2. The circles A, B, and C represent
three different G+ in Fig. 2 with A :G+ = 29900 Hz, B :G+ =
30000 Hz, and C :G+ = 30070 Hz. Note that the TMS inter-
action strength should satisfy G+ < 30100 Hz (point D) to
avoid the instability effect of the mechanical system.

FIG. 4. Intensity gain of the signal and FWM fields as a function
of the mechanical intrinsic damping rate γm.

From Eqs. (15) and (16), the peak intensity gain of the sig-
nal (FWM) field at the center frequency 	s = −	′

m (−	s =
	′

m) is given by

Rs = |A[−	′
m]κex − 1|2, (17)

Rc = |B[	′
m]κex|2. (18)

Figure 4 shows the peak intensity gain of the signal (FWM)
field as a function of the mechanical intrinsic damping rate γm,
in which the optomechanical self-energy is set to zero, that is,
G+ = G− = 3 × 104 Hz, and the other simulation parameters
are the same as those in Fig. 2. We find that the lower
mechanical intrinsic damping rate γm makes a higher intensity
gain, which can exceed 105 at the region of γm < 30 Hz. This
indicates that a high-quality factor of the mechanical resonator
predicts a high intensity gain in the absence of optomechanical
self-energy.

For a given mechanical resonator with a fixed quality
factor, one can tune the peak intensity gain by controlling the
optomechanical self-energy. To this end, we fix G− and adjust
G+ to 29900 Hz (point A), 30000 Hz (point B), and 30070 Hz
(point C), as shown in Fig. 3(b); the effective mechanical
damping rate is changed to γeff = {64.0,31.4, 8.5} Hz. In
order to verify that the effective mechanical damping γeff

has the same tuning effect on the intensity gain as the in-
trinsic damping rate γm, we extract three intrinsic damping
rates: A′ : 8.5 Hz, B′ : 31.4 Hz, and C′ : 64.0 Hz. These are
presented in Fig. 4, and have the same values as A, B, and
C. We find that the intensity gains of A′, B′, andC′ in Fig. 4
are equal to the peak gains of A, B, and C, respectively (see
Fig. 2). According to the above analysis, the peak gain of the
intensity mainly depends on the effective mechanical damping
rate when the TMS coupling strength G+ varies around G−.

IV. THE QUANTUM ENTANGLEMENT

In this section, we study the properties of quantum entan-
glement between the signal and FWM fields with logarithmic
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FIG. 5. Entanglement of the signal and FWM modes as a func-
tion of analysis frequency under different TMS interaction strengths
G+. σ = G+/G− and G− = 1.2 × 105 Hz.

negativity. For two-mode Gaussian states, the logarithmic
negativity can be expressed as

EN = min{0,−log2(2ν−)}, (19)

where the parameter ν− is the smallest symplectic eigenvalues
of the covariance matrix V charactering the state of the signal
and FWM modes. The components of the covariance matrix
V have the standard form Vi j = (1/2)〈	ζi	ζ j + 	ζ j	ζi〉,
where 	ζi = ζi − 〈ζi〉,

⇀

ζ i = [Xs,Ys, Xc,Yc], and Xs(Ys) and
Xc(Yc) are amplitude quadrature (phase quadrature) of the
signal and FWM fields, respectviely. Note that for the spectral
components of continuous stationary fields, the parameter ν−
is equal to the two-mode squeezing spectrum [48], ν−[ω] =
S[ω] (see Appendix B for detailed expressions of S[ω]).

Figure 5 plots the entanglement of the signal and FWM
modes as a function of analysis frequency under different
TMS interaction strength G+. The parameters of the mechan-
ical resonator we use for simulation are taken from Ref. [50],
with the mechanical frequency ωm = 2π × 1.14 × 106 Hz
and the quality factor Qm = 1.03 × 109. The other simulation
parameters used are κ = 0.1ωm, κex = 0.98κ , ω0 = 0.95ωm,
and the environment temperature T = 1 K. Note that ω = 0
corresponds to the frequency of the peak intensity gain of the
signal (FWM) field, 	s = −	′

m (−	s = 	′
m) [Fig. 2(a)].

In order to satisfy the weak-coupling condition G± � κ ,
we fix the coupling strength of the BS interaction G− = 1.2 ×
105 Hz and vary the coupling strength of the TMS interaction
G+, which is normalized by G−, that is, σ = G+/G−. The
quantum entanglement increases with increasing σ (or TMS
interaction strength G+). For σ = 0.95, a strong quantum
entanglement (∼5.3) can be achieved. However, the band-
width of the noise power spectrum decreases when σ (G+)
increases; this is due to the effective mechanical damping rate
being reduced [see Eq. (8)].

The achievable quantum entanglement also depended on
other parameters of the optomechanical system, for instance,

FIG. 6. The maximum entanglement at the center analysis fre-
quency (ω = 0) versus the escape efficiency of the optical cavity
κex/κ . For all curves, G− = 1.2 × 105 Hz.

the escape efficiency of the optical cavity κex/κ . Figure 6 plots
the maximum quantum entanglement at the center analysis
frequency (ω = 0) as a function of the escape efficiency of the
optical cavity κex/κ; the other simulation parameters are the
same as those in Fig. 5. We find that a higher escape efficiency
is beneficial to achieving stronger quantum entanglement,
and significant entanglement can be achieved for an escape
efficiency κex/κ larger than 0.9. In the range of κex/κ < 0.9,
the differences of the entanglement for three different ratios of
optomechanical coupling strength, σ = 0.75, 0.85, 0.95, are
not distinct.

The achievable quantum entanglement also depends on
the environment temperature where the mechanical resonator
is located. A large thermal phonon occupation number sig-
nifies intense thermal motion of the mechanical resonator,
which modulates the optical fields in a noncoherent way
and degrades the quantum entanglement of the optical fields.
Usually, a mechanical resonator is precooled by a cryogenic
cooling system to keep the optomechanical system away
from thermal noises. Figure 7 plots the maximum quantum
entanglement as a function of the environment temperature
T. The optomechanical coupling strength ratio between the
BS interaction G− and TMS interaction G+ is set to σ =
G+/G− = 0.95, and G− is varied (other parameters are the
same as those in Fig. 5).

For three different BS interaction strengths G−, Fig. 7
shows that the quantum entanglement decreases with the
increasing environment temperature; that is, lower thermal
phonon occupation is required to achieve a greater quantum
entanglement. At finite temperature, the entanglement sig-
nificantly depends on the BS interaction strength G− and
TMS interaction strength G+. For the coupling strength G− =
1.2 × 105 Hz (green solid line), strong entanglement of ∼5.3
can be generated at T = 1 K and it drops with increasing
temperature and disappears at room temperature (T = 298 K).
When improving the coupling strength G− to 1.8 × 105 Hz
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FIG. 7. Maximum entanglement at the center analysis frequency
(ω = 0) as a function of the environment temperature T with σ =
G+/G− = 0.95.

(blue dotted line), quantum entanglement beyond 3 dB can
still be obtained at room temperature, where the thermal
phonons’ occupation of the mechanical mode n̄th is around
5.4 × 106. We see that our scheme is quite robust against
temperature (thermal mechanical noise), and the robustness is
more significant for stronger BS interaction and TMS interac-
tion, which is particularly important for practical preparation
of optical quantum entanglement.

In the above analysis, we have assumed that the two tone
pumps are symmetrically detuned from the cavity resonance
frequency for simplicity. In this case, the output signal and
FWM fields are symmetrically located at two sides of the
cavity resonance frequency. If the detuning of the two tone
pumps are nonsymmetric with ω− = ωc − ω0 + 	 and ω+ =
ωc + ω0, the simulations shows that output signal and FWM
fields will also be nonsymmetric relative to the cavity reso-
nance and their intensity gain decrease accordingly. For 	 =
5 × 10−3ωm, which is feasible with current technology, the
intensity gain is still above several hundreds. In this case, the
entanglement is almost intact.

V. CONCLUSIONS

In summary, we have proposed a scheme to generate
strong quantum entanglement by a controllable optomechan-
ical FWM mechanism in a resolved-sideband and weak-
coupling optomechanical system. First, we studied the clas-
sical behaviors of the optomechanical FWM process and
showed that the frequency response characteristics, includ-
ing the bandwidth, center frequency, and intensity gain, are
tunable by the optomechanical self-energy effect. Then, we
investigated the quantum entanglement characteristics be-
tween the signal and FWM fields, and found that the two
optical fields are strongly quantum entangled with a logarithm
negativity of ∼5.3 in proper conditions. We analyzed the key
factors that affect the degree of the quantum entanglement
and its bandwidth, including the optomechanical coupling

strength (BS and TMS interactions) and their ratio, the escape
efficiency of the optical cavity, and the initial environment
temperature of the mechanical resonator. In particular, we
find that significant entanglement with logarithm negativity
larger than 1 can be achieved at room temperatures with the
state-of-art optomechanical systems.

The presented scheme provides a promising way for quan-
tum state engineering with low pump power, integrated mi-
crodevices. In principle, it can apply to various optomechan-
ical and electromechanical systems operating from the ultra-
violet to microwave band, which may find potential applica-
tions in future quantum communication network and quantum
information processing.
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APPENDIX A: SOLUTIONS OF THE LANGEVIN
EQUATIONS IN THE FREQUENCY DOMAIN

Using the Fourier transform, Eqs. (6) and (7) are converted
into the frequency domain:

a1[ω] = χc[ω]{−i(G−b1[ω] + G+b†
1[ω]) + √

κexαs[ω − 	s]

+ √
κexain[ω] + √

κ0av[ω]}, (A1)

b1[ω] = χm[ω]{−i(G−a1[ω] + G+a†
1[ω]) + √

γmη[ω]},
(A2)

where χc[ω] = (−iω + κ/2)−1 and χm[ω] = [−i(ω − 	m)
+ γm/2]−1 are the susceptibilities of the optical cavity and
mechanical resonator, respectively. Combining Eqs. (A1) and
(A2), and using the operator conjugate relation (o[ω])† =
o†[−ω], we obtain the fluctuation field of the optical cavity
mode in the frequency domain,

a1[ω] = A[ω](
√

κexαs[ω − 	s] + √
κexain[ω] + √

κ0av[ω])

+ B[ω](
√

κexα
∗
s [ω + 	s] +√

κexa†
in[ω] +√

κ0a†
v[ω])

+C[ω]
√

γmη[ω] + D[ω]
√

γmη†[ω]. (A3)

The coefficients that depend on the related parameters of
the optomechanical system are given by

A[ω] = χc[ω]{1 + χc[ω](G2
−χ∗

m[−ω] − G2
+χm[ω])}

(1 + χm[ω]�[ω])(1 + χ∗
m[−ω]�[ω])

,

B[ω] = χc[ω]χc[ω]G−G+(χ∗
m[−ω] − χm[ω])

(1 + χm[ω]�[ω])(1 + χ∗
m[−ω]�[ω])

,

(A4)

C[ω] = −i
χc[ω]χm[ω]G−

(1 + χm[ω]�[ω])
,

D[ω] = −i
χc[ω]χ∗

m[−ω]G+
(1 + χ∗

m[−ω]�[ω])
.

053842-6



QUANTUM ENTANGLEMENT VIA A CONTROLLABLE … PHYSICAL REVIEW A 100, 053842 (2019)

Here, �[ω] represents the optomechanical self-energy that is
derived from the unequal optomechanical coupling strength
between the BS and TMS interactions, and is defined as

�[ω] = χc[ω](G2
− − G2

+). (A5)

The real and imaginary parts of the optomechanical self-
energy correspond to the frequency-dependent optomechani-
cal damping rate γopt = 2Re(�[ω]) and mechanical frequency
shift δωm[ω] = Im(�[ω]), respectively. In the weak-coupling
regime G± � κ , the corresponding optomechanical damping
rate and mechanical frequency shift [1] are given by

γopt = κ (G2
− − G2

+)

	2
m + κ2/4

, (A6)

δωm = 	m(G2
− − G2

+)

	2
m + κ2/4

. (A7)

APPENDIX B: THE QUANTUM CORRELATION
SPECTRUM

In this appendix, the detailed expressions for the amplitude
quadrature sum noise power spectrum S+

XX [ω] and the phase
quadrature difference noise power spectrum S−

YY [ω] are de-
rived. The amplitude and phase quadratures of the signal and
FWM fields in the frequency domain are defined as

Xs[ω] = (ar1[ω − 	s] + a†
r1[ω + 	s])/

√
2, (B1)

Ys[ω] = −i(ar1[ω − 	s] − a†
r1[ω + 	s])/

√
2, (B2)

Xc[ω] = (ar1[ω + 	s] + a†
r1[ω − 	s])/

√
2, (B3)

Yc[ω] = −i(ar1[ω + 	s] − a†
r1[ω − 	s])/

√
2. (B4)

From the above optical field quadratures, we further define
two combined field quadratures, including both signal and
FWM fields. These are written as

X +[ω] = (Xs[ω] + Xc[ω])/
√

2, (B5)

Y −[ω] = (Ys[ω] − Yc[ω])/
√

2. (B6)

The amplitude quadrature sum noise power spectrum
S+

XX [ω] and the phase quadrature difference noise power

spectrum S−
YY [ω] have the following form:

S+
XX [ω] = (

Ss−s
XX [ω] + Sc−c

XX [ω] + Ss−c
XX [ω] + Sc−s

XX [ω]
)
/2, (B7)

S−
YY [ω] = (

Ss−s
YY [ω] + Sc−c

YY [ω] − Ss−c
YY [ω] − Sc−s

YY [ω]
)
/2. (B8)

From the right-hand sides of Eqs. (B7) and (B8), we note
that the quantum correlation noise power spectrum contains
four terms. The first two terms represent the self-correlation
spectrum of the signal (FWM) field and itself, and the last two
terms are derived from the cross-correlation spectra between
the signal and FWM fields, which are essential to generate the
quantum entanglement.

From Eq. (12) presented in Sec. II, the Fourier transform
of the conjugate of the fluctuation field ar1 is given by

a†
r1[ω] = M[ω]κexain[ω] + M[ω]

√
κexκ0av[ω]

+ (N[ω]κex − 1)a†
in[ω] + N[ω]

√
κexκ0a†

v[ω]

+ P[ω]
√

κexγmη[ω] + Q[ω]
√

κexγmη†[ω], (B9)

where the related coefficients are

M[ω] = χc[ω]χc[ω]G−G+(χm[ω] − χ∗
m[−ω])

(1 + χm[ω]�[ω])(1 + χ∗
m[−ω]�[ω])

,

N[ω] = χc[ω]{1 + χc[ω](G2
−χm[ω] − G2

+χ∗
m[−ω])}

(1 + χm[ω]�[ω])(1 + χ∗
m[−ω]�[ω])

,

(B10)

P[ω] = i
χc[ω]χm[ω]G+

(1 + χm[ω]�[ω])
,

Q[ω] = i
χc[ω]χ∗

m[−ω]G−
(1 + χ∗

m[−ω]�[ω])
.

To derive the quadrature noise power spectrum, the follow-
ing correlation relations are used, including the correlation
of input optical fields, and thermal noise correlation of the
mechanical mode in the frequency domain; here we have
assumed that the input field modes are in coherent states:

〈ain[ω]a†
in[ω′]〉 = 〈av[ω]a†

v[ω′]〉 = δ−ωω′ ,

〈a†
in[ω]ain[ω′]〉 = 〈a†

v[ω]av[ω′]〉 = 0,
(B11)

〈η[ω]η†[ω′]〉 = (n̄th + 1)δ−ωω′ ,

〈η†[ω]η[ω′]〉 = n̄thδ−ωω′ ,

where n̄th denotes the initial thermal phonons’ occupation of
the mechanical mode; it is proportional to the environment
temperature where the mechanical resonator is located. Using
Eqs. (12), (A4), and (B9)–(B11), we finally obtain

Ss−s
XX [ω] = Ss−s

YY [ω] = 0.5{(A[ω1]κex − 1)(N[−ω1]κex − 1) + M[ω2]B[−ω2]κ2
ex + (A[ω1]N[−ω1] + M[ω2]B[−ω2])κexκ0

+ κexγm[(C[ω1]Q[−ω1] + P[ω2]Q[−ω2])(n̄th + 1) + (D[ω1]P[−ω1] + Q[ω2]C[−ω2])n̄th]}, (B12)

Sc−c
XX [ω] = Sc−c

YY [ω] = 0.5{(A[ω2]κex − 1)(N[−ω2]κex − 1) + M[ω1]B[−ω1]κ2
ex + (A[ω2]N[−ω2] + M[ω1]B[−ω1])κexκ0

+ κexγm[(C[ω2]P[−ω2] + P[ω1]Q[−ω1])(n̄th + 1) + (D[ω2]P[−ω2] + Q[ω1]C[−ω1])n̄th]}, (B13)

Ss−c
XX [ω] = −Ss−c

YY [ω] = 0.5{[(A[ω1]κex − 1)B[−ω1] + M[ω2](N[−ω2]κex − 1)]κex + (A[ω1]B[−ω1] + M[ω2]N[−ω2])κexκ0

+ κexγm[(C[ω1]D[−ω1] + P[ω2]Q[−ω2])(n̄th + 1) + (D[ω1]C[−ω1] + Q[ω2]P[−ω2])n̄th]}, (B14)
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Sc−s
XX [ω] = −Sc−s

YY [ω] = 0.5{[(A[ω2]κex − 1)B[−ω2] + M[ω1](N[−ω1]κex − 1)]κex + (A[ω2]B[−ω2] + M[ω1]N[−ω1])κexκ0

+ κexγm[(C[ω2]D[−ω2] + P[ω1]Q[−ω1])(n̄th + 1) + (D[ω2]C[−ω2] + Q[ω1]P[−ω1])n̄th]}, (B15)

where ω1 = ω − 	s and ω2 = ω + 	s.

Inserting Eqs. (B12)–(B15) into Eqs. (B7) and (B8), we
obtain the quantum correlation spectrum between the signal

and FWM fields. Note that S+
XX [ω] = S−

YY [ω] = S[ω]; that is,
the two-mode correlation is symmetric.
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